Linear Sorts

Chapter 11

Linear Sorts?

Comparison sorts are very general, but are $\Omega(n \log n)$
Faster sorting may be possible if we can constrain the nature of the input.

Linear Sorting Algorithms

$>$ Counting Sort
> Radix Sort
> Bucket Sort

Linear Sorting Algorithms

$>$ Counting Sort
> Radix Sort
> Bucket Sort

Example 1. Counting Sort

$>$ Invented by Harold Seward in 1954.
> Counting Sort applies when the elements to be sorted come from a finite (and preferably small) set.
> For example, the elements to be sorted are integers in the range [0...k-1], for some fixed integer k.
$>$ We can then create an array $\mathrm{V}[0 \ldots \mathrm{k}-1]$ and use it to count the number of elements with each value [0...k-1].
$>$ Then each input element can be placed in exactly the right place in the output array in constant time.

Counting Sort

Input:
Output:
0

$>$ Input: N records with integer keys between [0...3].
> Output: Stable sorted keys.
> Algorithm:
\square Count frequency of each key value to determine transition locations
\square Go through the records in order putting them where they go.

CountingSort

Stable sort: If two keys are the same, their order does not change.
Thus the $4^{\text {th }}$ record in input with digit 1 must be the $4^{\text {th }}$ record in output with digit 1 .

It belongs at output index 8, because 8 records go before it ie, 5 records with a smaller digit \& 3 records with the same digit

CountingSort

Input:

Value v: | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| | \# of records with digit v: | | |
| | 9 | 3 | 2 |
| | | | |

N records. Time to count? $\theta(\mathrm{N})$

CountingSort

Input:

1	0	0	1	3	1	1	3	1	0	2	1	0	1	1	2	2	1	0
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

Value v:	0	1	2	3
\# of records with digit v:	5	9	3	3
\# of records with digit < v:	0	5	14	(17)

N records, k different values. Time to count? $\theta(\mathrm{k})$

CountingSort

CountingSort

 with digit v .

Algorithm: Go through the records in order putting them where they go.

Loop Invariant

$>$ The first $i-1$ keys have been placed in the correct locations in the output array
$>$ The auxiliary data structure v indicates the location at which to place the $i^{\text {th }}$ key for each possible key value from [0..k-1].

CountingSort

 with digit v .

Algorithm: Go through the records in order putting them where they go.

CountingSort

 with digit v .

Algorithm: Go through the records in order putting them where they go.

CountingSort

 with digit v .

Algorithm: Go through the records in order putting them where they go.

CountingSort

 with digit v .

Algorithm: Go through the records in order putting them where they go.

CountingSort

 with digit v .

Algorithm: Go through the records in order putting them where they go.

CountingSort

 with digit v .

Algorithm: Go through the records in order putting them where they go.

CountingSort

 with digit v .

Algorithm: Go through the records in order putting them where they go.

CountingSort

 with digit v .

Algorithm: Go through the records in order putting them where they go.

CountingSort

 with digit v .

Algorithm: Go through the records in order putting them where they go.

CountingSort

 with digit v .

Algorithm: Go through the records in order putting them where they go.

CountingSort

 with digit v .

Algorithm: Go through the records in order putting them where they go.

CountingSort

 with digit v .

Algorithm: Go through the records in order putting them where they go.

CountingSort

 with digit v .

Algorithm: Go through the records in order putting them where they go.

CountingSort

 with digit v .

Time $=\theta(\mathrm{N})$
Total $=\theta(\mathrm{N}+\mathrm{k})$

Linear Sorting Algorithms

$>$ Counting Sort
> Radix Sort
> Bucket Sort

Example 2. RadixSort

Input:

- An array of N numbers.
- Each number contains d digits.
- Each digit between [0...k-1]

Output:

- Sorted numbers.

Digit Sort:

- Select one digit
- Separate numbers into k piles based on selected digit (e.g., Counting Sort).

Stable sort: If two cards are the same for that digit, their order does not change.

RadixSort

344	
125	
333	Sort wrt which
134	digit first?
224	
334	The most
143	significant.
225	
325	
243	

125
134
143
224
225
2243
334
333
334
325

RadixSort

344	Sort wrt which digit first?	333
125		143
333		243
134		344
224		134
334	The least significant.	224
143		334
225		125
325		225
243		325
RK/U		${ }^{30}$.

Sort wrt which digit Second?

The next least significant.

RadixSort

344
125
333
134
224
334
143
225
325
243
RK U

333
143
243
344
134
224
334
125
225
325

224
125

Sort wrt which 225 digit Second? 325

333
The next least 134
significant. 334
143
243
344
Is sorted wrt least sig. 2 digits.

RadixSort

$$
\begin{array}{l|l}
2 & 24 \\
1 & 25 \\
2 & 25 \\
3 & 25 \\
3 & 33 \\
1 & 34 \\
3 & 34 \\
1 & 43 \\
2 & 43 \\
3 & 44 \\
i+1 & 4 \\
i^{2}
\end{array}
$$

Is sorted wrt first $\mathrm{i}+1$ digits.

These are in the correct order because sorted wrt high order digit

RadixSort

224	not
125	
225	Is sorted wrt
325	first i digits.
333	
134	
334	t
143	2
243	Sort wrt i+1st
344	digit.

125	
134	
143	
224	
225	
243	
325	
333	
3	34
3	44
-33	

Is sorted wrt first $\mathrm{i}+1$ digits.

These are in the correct order because was sorted \& stable sort left sorted

Loop Invariant

> The keys have been correctly stable-sorted with respect to the $i-1$ least-significant digits.

Running Time

RADIX-Sort (A, d)
for $i \leftarrow 1$ to d
do use a stable sort to sort array A on digit i
Running time is $\Theta(d(n+k))$
Where
$d=\#$ of digits in each number
$n=\#$ of elements to be sorted
$k=\#$ of possible values for each digit

Linear Sorting Algorithms

$>$ Counting Sort
> Radix Sort
> Bucket Sort

Example 3. Bucket Sort

> Applicable if input is constrained to finite interval, e.g., real numbers in the range [0...1).
$>$ If input is random and uniformly distributed, expected run time is $\Theta(n)$.

Bucket Sort

 insert $A[i]$ into list $B[\lfloor n \cdot A[i]\rfloor]$

Loop Invariants

>Loop 1
\square The first $i-1$ keys have been correctly placed into buckets of width $1 / n$.
$>$ Loop 2
\square The keys within each of the first $i-1$ buckets have been correctly stable-sorted.

PseudoCode

Bucket-Sort (A, n)
Expected Running Time
for $i \leftarrow 1$ to n
do insert $A[i]$ into list $B[\lfloor n \cdot A[i]\rfloor] \longleftarrow \Theta(1) \times n$
for $i \leftarrow 0$ to $n-1$
do sort list $B[i]$ with insertion sort $\quad-\Theta(1) \times n$ concatenate lists $B[0], B[1], \ldots, B[n-1] \longleftarrow \Theta(n)$ return the concatenated lists

Linear Sorting Algorithms

$>$ Counting Sort
> Radix Sort
> Bucket Sort

Linear Sorts: Learning Outcomes

> You should be able to:
\square Explain the difference between comparison sorts and linear sorting methods.
\square Identify situations when linear sorting methods can be applied and know why.
\square Explain and/or code any of the linear sorting algorithms we have covered.

